Positive Solution of a Nonlinear Quadratic Integral Equations

Dnyaneshwar.V. Mule Research Scholar, Deptt. of Mathematics, North Maharashtra University, Jalgoan

Bhimrao. R. Ahirrao Head of Department, Deptt. of Mathematics, Z. B. Patil College, Deopur, Dhule

Ravindra P. Mahale Assistant Professor, Deptt. of Mathematics, Z. B. Patil College,

Deopur, Dhule

Abstract

In the present paper we prove the existence, approximations and positive solutions for a nonlinear quadratic integral equation. By using Dhage iteration method in partially ordered normed linear spaces. **Subject Classification**

Quadratic integral equation; approximate positive solution; fixed point theorem.

Keywords: 45G10, 47H09, 47H10

Introduction

The quadratic integral equations have been studied by some autors see See Ar- gyros [1], Deimling [3], Chandrasekher [2] and the references therein. Recently fixed point principles in Banach algebras due to Dhage [5, 6,]. The motivation of this paper due work of EL-Sayed A.M.A and Hashem H.H.G [4]. In this paper we modify positive solution of that problem [4] by using Dhage itration method. We prove the existence, approximations and positive solutions of a certain quadratic integral equation via an algorithm based on successive ap-proximations under partially Lipschitz and compactness conditions by using Dhage iteration method.

Given a closed and bounded interval J = [0; T], of the real line R, T > 0

$$x(t) = a(t) + g(t, x(t)) \int_0^t k(t, s) f(s, x(s)) ds$$
(1)

Where $f,g\colon J\times\mathbb{R}\to\mathbb{R}\,,k\colon J\times J\to\mathbb{R}\,,a\colon J\to\mathbb{R}$ are continuous functions.

By a solution of the NQIE (1) we mean a function $x \in C(J; R)$ that satisfies the equation (1) on J, where C(J; R) is the space of continuous real-valued functions defined on J.

The NQIE (1) is well-known in the literature and here we find existence as well as approximations of positive solution of NQIE (1) by using work of Dhage [5]. If k(t,s)f(s,x(s))ds = 1 for all $t \in J$ and $x \in R$ the NQIE (1) reduces to nonlinear functional equation.

$$= g(t, x(t)), t \in J$$
(2)

and if a(t) = 0 and g(t, x(t)) = 1 for all $t \in J$ and $x \in R$, it is reduced to nonlinear usual Volterra integral equation.

x(t) =

x(t

$$f = \int_{0}^{t} k(t, s) f(s, x(s)) ds$$
 (3)

Therefore, the NQIE (1)is general and the results of this paper include the existence, approximations results and positive solutions. **Auxiliary Results**

Let E denote a partially ordered real normed linear space with an order relation \leq and the norm ||.||. It is known that E is regular if $\{x_n\}_{n \in N}$ is a nondecreasing (resp. nonincreasing) sequence in E such that $x_n \to x^*$ as $n \to \infty$ then $x_n \leq x^*$ resp. $x_n \geq x^*$ for all $n \in \mathbb{N}$.

We need the following definitions.

Definition 2.1

A mapping $T: E \to E$ is called isotone or nondecreasing if it preserves the order relation \leq , that is if $x \leq y$ implies $T x \leq T y$ for all $x, y \in E$.

Definition 2.2

A mapping $T: E \to E$ is called partially continuous at a Point $a \in E$ if for $\epsilon > 0$ there exists a $\delta > 0$ such that $||T_x - T_a|| < \epsilon x$ is comparable to a and $||x - a|| < \delta$. T called partially continuous on E if it is partially continuous at every point of it. It is clear that if T is partially continuous on E, then it is continuous on every chain C contained in E. **Definition 2.3**

A mapping $T: E \rightarrow E$ is called partially bounded if T (C) is bounded for every chain C in E. T is called uniformly partially bounded if all chains T (C) in E are bounded by a unique constant. T is called bounded if T (E) is a bounded subset of E.

ISSN No. : 2394-0344

Definition 2.4

A mapping $T: E \rightarrow E$ is called partially compact if T(C) is a relatively compact subset of E for all totally ordered sets or chains C in E. T is called uniformly partially compact if T (C) is a uniformly partially bounded and partially compact on E. T is called partially totally bounded if for any totally ordered and bounded subset C of E, T (C) is a relatively compact subset of E. If T is partially continuous and partially totally bounded, then it is called partially completely continuous on E.

Definition 2.5

The order relation \leq and the metric d on a non-empty set E are said to be compatible if $\{x_n\}_{n \in N}$ is a monotone that is, monotone nondecreasing or monotone nonincreasing sequence in E and if a subsequence $\{x_{n_k}\}_{n \in N}$ of $\{x_n\}_{n \in N}$ converges to x^* implies that the whole sequence $\{x_n\}_{n \in N}$ converges to converges to x^* . Similarly, given a partially ordered normed linear space $(E, \leq ||.||)$, the order relation \leq and the norm $\|.\|$ are said to be compatible if \leq and the metric d defined through the norm ||. || are compatible. Clearly, the set R of real numbers with usual order relation \leq and the norm defined by the absolute value function |. | has this property. Similarly, the finite dimensional Euclidean space Rⁿ with usual componentwise order relation and the standard norm possesses the compatibility property.

Definition 2.6

A upper semi-continuous and nondecreasing function $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ is called a D-function provided $\psi(0) = 0.$ Let $(E, \leq, \|.\|)$ be a partially ordered normed linear space. A mapping $T: E \to E$ is called partially nonlinear D-Lipschitz if there exists a D-function $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$||T_{x} - T_{y}|| \le \psi(||x - y||)$$
(4)

for all comparable elements x; $y \in E$. If $\psi(r) = kr$; k > 0, then T is called a partially Lipschitz with a Lipschitz constant k.Let $(E, \leq, ||.||)$ be a partially ordered normed linear algebra. Denote

 $E^+ = \{x \in E | x \ge \theta \text{ where } \theta \text{ is zero element of } E\}$ and

$$K = \{E^+ \subseteq E | uv \in E^+ \text{ for all } uv \in E^+\}$$
(5)

The elements of the set K are called the positive vectors in E.

Lemma 2.7

If $u_1, u_2, v_1, v_2 \in K$ are such that $u_1 \leq v_1$ and $u_2 \leq v_2$ Then $u_1 u_2 \leq v_1 v_2$

Definition 2.8

An operator T: $E \rightarrow E$ is said to be positive if the range R T of T is such that R T \subseteq K. The Dhage iteration method is embodied in the following hybrid fixed point theorem which is a useful tool in this paper. **Theorem 2.9**

Let $(E, \leq, \|.\|)$ be a regular partially ordered complete normed linear algebra such that the order relation \leq and the norm $\|.\|$ in E are com-patible in every compact chain of E. Let A; B : E \rightarrow K be two nondecreasing operators such that

- 1. A is partially bounded and partially nonlinear D-Lipschitz with D-function ψ_A
- 2. B is partially continuous and uniformly partially compact, and
- 3. $M \psi_A(r) < r; r > 0$, where and $M = \{\sup ||B(C)|| K: C \text{ is a chain in } E\}$ and

Remarking : Vol-2 * Issue-4*September-2015

4. there exists an element $x_0 \in X$ such that $x_0 \le Ax_0Bx_0$ or $x_0 \ge Ax_0Bx_0$. be a regular partially ordered complete normed line Then the operator equation

$$AxBx = x \tag{6}$$

has a positive solution x^* in E and the sequence $\{x_n\}$ of successive iterations defined by $x_{n+1} = Ax_n Bx_n$, n = 0; 1.... converges monotonically to x^*

Main Results

The NQIE (1) is considered in the function space C(J; R) of continuous real-Valued functions defined on J. We define a norm $\|.\|$ and the order relation \leq in C(J; R) by

 $\|\mathbf{x}\| = \sup_{t \in \mathbf{I}} |\mathbf{x}(t)|$

And

$$x \le y \Leftrightarrow x(t) \le y(t)$$
 (8)

(7)

for all $t \in J$ respectively. Clearly, C(J; R) is a Banach algebra with respect to above supremum norm and is also partially ordered w.r.t. the above partially order relation \leq It is known that the partially ordered Banach algebra C(J; R) has some nice properties w.r.t. the above order relation in it. The following lemma follows by an application of Arzella-Ascolli theorem

Lemma 3.1

Let $(C(J; R, \leq, \|.\|)$ be a partially ordered Banach space with The norm $\|.\|$ and the order relation \leq defined by (7) and (8) respectively. Then $\|.\|$ and \leq are compatible in every partially compact subset of C (J;R).

We need the following definition in what follows

Definition 3.2

A function $u \in C(J;R)$ is said to be a lower solution of the NQIE (1) if it satisfies

$$u(t) = a(t) + g(t, u(t)) \int_0^t k(t, s) f(s, u(s)) ds$$

for all $t \le J$ Similarly, a function $v \in C(J;R)$ is said to be a lower solution of the NQIE (1) if it satisfies the above inequalities with reverse sign.

We consider the following set of assumptions in what follows:

(A₀) a defines a continuous function $a: J \rightarrow \mathbb{R}_+$

(A₁) g defines a function g: $J \times \mathbb{R} \to \mathbb{R}$.

(A₂) There exists a real number $M_g > 0$ such that $g(t; x) \le M_g$ for all $t \in J$ and $x \in R$.

(A₃) There exists a D-function ϕ such that $0 \le g(t; x) - g(t; y) \le \phi(x - y)$ for all $t \in J$ and $x; y \in J$

 $R, x \ge y$

(B₁) f defines a function $f: J \times \mathbb{R} \to \mathbb{R}$

(B₂) There exists a real number $M_f > 0$ such that

 $f(t; \ x) \leq \ M_f \ \text{for all} \ t \ \in \ J \ \text{and} \ x \ \in \ R.$

(B₃) f(t; x) is nondecreasing in x for all $t \in J$.

(B₄) The NQIE (1) has a lower solution $u \in C(J; R)$ **Theorem 3.3**

Assume that hypotheses (A0)-(A3) and (B1)-(B₄) hold. Furthermore, assume that,

$$(M_f KT)\psi_a(r) + ||a|| < r, r > 0$$
(9)

then the NQIE has a positive solution x^* defined on J and the sequence $\{x_n\}_{n \in N}$ of successive approximations defined by.

 $\begin{aligned} x_{n+1}(t) &= a(t) + g(t, x_n(t)) \int_{t_0}^t k(t, s) f(s, x_n(s)) ds, t \in J \\ \text{where, } x_0 &= u \text{ converges monotonically to } x^* \end{aligned} \tag{10}$

Set E = C(J; R). Then, from Lemma 3.1 it follows that every compact chain in E possesses the compatibility property with respect to the norm $\|.\|$ and the order relation \leq in E. Define two operators A and B on E by

$$Ax(t) = g(t; x(t)); t \in J$$
 (11)

$$Bx(t) = \int_{t_0}^{t} k(t,s) f(s, x_n(s)) ds$$
(12)

From the continuity of the integral and the hypotheses (A0)-(A1) and (B1), it follows that A and B define the maps A; $B : E \to K$. Now by definitions of the operators A and B, the NQIE (1) is equivalent to the operator equation

 $Ax(t). Bx(t) = x(t); t \in J$ (13)

We shall show that the operators A and B satisfy all the conditions of Theorem 2.9. This is achieved in the series of following steps.

Step I

A and B are nondecreasing on E. Let $x; y \in Ebe$ such that $x \ge y$. Then by hypothesis (A2), we obtain

$$\begin{aligned} Ax(t) &= a(t) + g(t; x(t)) \\ &\geq a(t) + g(t; y(t)) \\ &= Ay(t) \end{aligned}$$

for all $t \in J$. This shows that A is nondecreasing operator on E into E. Similarly using hypothesis (B3), it is shown that the operator B is also nonde-creasing on E into itself. Thus, A and B are nondecreasing positive operators on E into itself. **Step II**

A is partially bounded and partially D-Lipschitz on E.

Let $x \in E$ be arbitrary. Then by (A2) $|Ax(t)| \le |a(t) + g(t; x(t))|$ $\le |a(t)| + |g(t; x(t))|$ $\le ||a|| + M_g$ for all $t \in L$ Taking supremum on

for all $t \in J$. Taking supremum over t, we obtain $||Ax|| \le ||a|| + Mg$ and so, A is bounded. This further implies that A is partially bounded on E. Next, let x; $y \in E$ be such that $x \ge y$. Then, by hypothesis (A3),

$$|Ax(t) - Ay(t)| = |a(t) + g(t; x(t)) - a(t) - g(t; y(t))|$$

$$\leq |g(t; x(t)) - g(t; y(t))|$$

$$\leq \phi(|x(t) - y(t)|)$$

$$\leq \phi(x - y)$$

for all t \in L. Taking currently over t we

for all $t \in J$. Taking supremum over t, we obtain $||Ax - Ay|| \le \phi$ (||x - y||) for all $x; y \in E$ with $x \ge y$. Hence A is a partially nonlinear D-Lipschitz on E which further implies that A is a partially continuous on E.

Step III

B is partially continuous on E Let $\{x_n\}_{n \in N}$ be a sequence in a chain C of E such that $x_n \to x$ for all $n \in N$. Then, by dominated convergence theorem, we have

$$\lim_{x \to \infty} Bx(t) = \lim_{x \to \infty} \int_0^t k(t, s) f(s, x(s)) ds$$
$$= \int_{t_0}^t k(t, s) \Big[\lim_{x \to \infty} f(s, x(s)) \Big] ds$$
$$= \int_{t_0}^t k(t, s) f(s, x(s)) ds$$
$$= Bx(t)$$

for all $t \in J$. This shows that Bx_n converges monotonically to Bx pointwise on J. Next, we will show that $\{Bx_n\}_{n \in N}$ is an equicontinuous sequence of functions in E. Let $t_1, t_2 \in J$ with $t_1 < t_2$.

Remarking : Vol-2 * Issue-4*September-2015

$$|Bx_{n}(t_{2}) - Bx_{n}(t_{1})| \leq \left| \int_{0}^{t_{2}} k(t_{1}, s)f(s, x(s))ds - \int_{0}^{t_{2}} k(t_{2}, s)f(s, x(s))ds \right|$$

$$\leq \left| \int_{0}^{T} |k(t_{1}, s) - k(t_{2}, s)| M_{f}ds \right|$$

$$\leq KM_{f} |t_{1} - t_{2}|$$

$$\to 0 \text{ as } t_{1} - t_{2} \to 0$$

uniformly, for all $n \in \mathbb{N}$. This shows that the

uniformly for all $n \in N$. This shows that the convergence $Bx_n \rightarrow Bx$ is uniform and hence B is partially continuous on E. **Step IV**

B is uniformly partially compact operator on E. Let C be an arbitrary chain in E. We show that B(C) is a uniformly bounded and equicontinuous set in E. First we show that B(C) is uniformly bounded. Let $y \in B(C)$ be any element. Then there is an element $x \in C$ be such that y = Bx. Now, by hypothesis (B2),

$$y(t) \le \int_{t_0}^{t} k(t,s) |f(s,x(s))| ds$$

$$\le KM_f T$$

$$\le r$$

for all $t \in J$. Taking supremum over t, we obtain $||y|| = ||Bx|| \le r$ for all $y \in B(C)$. Hence, B(C) is a uniformly bounded subset of E. Moreover, $||B(C)|| \le r$ for all chains C in E.Hence, B is a uniformly partially bounded operator on E.

Next, we will show that B(C) is an equicontinuous set in E. Let $t_1,t_2 \ \in J$ with

$$\begin{aligned} t_1 &< t_2 \text{ rnen, for any } y \in B(C), \text{ one nas}, \\ |y(t_2) - y(t_1)| &= |Bx(t_2) - Bx(t_1)| \\ &\leq \left| \int_0^t k(t_1, s) f(s, x(s)) ds - \int_0^{t_1} k(t_2, s) f(s, x(s)) ds \right| \\ &\leq |k(t_1, s) - k(t_2, s)| \int_{t_1}^{t_2} |f(s, x(s)) ds| \leq KM_f |t_1 - t_2| \\ &\to 0 \text{ as } t_1 - t_2 \to 0 \end{aligned}$$

uniformly for all $y \in B(C)$. Hence B(C) is an equicontinuous subset of E. Now, B(C) is a uniformly bounded and equicontinuous set of functions in E, so it is compact. Consequently, B is a uniformly partially compact operator on E into itself. Step V

u satisfies the operator inequality $u \le AuBu$. By hypothesis (B4), the NQIE (1) has a lower solution u defined on J. Then, We have

$$\begin{split} u(t) &= a(t) + g(t,u(t)) \int_0^t k(t,s) f(s,u(s)) ds \eqno(14) \\ \text{for all } t &\in J \text{ From definitions of the operators A and B} \\ \text{it follows that} \end{split}$$

 $u(t) \le Au(t)Bu(t)$ for all $t \in J$.

Hence $u \leq AuBu$.

Step VI

D-function ϕ satisfies the growth condition $M\phi(r) < r$; r > 0. Finally, the D-function Φ of the operator A satisfies the inequality given in hypothesis (d) of Theorem 2.9, viz.

 $M\psi_A(r) \le (KM_fT + ||a||)\phi(r) < r, \text{ for all } r > 0$

Thus A and B satisfy all the conditions of Theorem 2.9 and we apply it to Conclude that the operator equation Ax Bx = x has a solution. Consequently the integral equation and the NQIE (1) has a solution x^* defined on J.Fur-theremore, $\{x_n\}_{n \in N}$ the sequence of successive approximations defined by (10) converges monotonically to x^* .This completes the proof.

ISSN No. : 2394-0344

References

- 1. I. K. Argyros, Quadratic equations and applications to Chandrasekhar's and related equations, Bull. Austral. Math. Soc. 32 (1985), 275-292.
- 2. S. Chandrasekher, Radiative Transfer, Dover Publications, New York, 1960.
- 3. K. Deimling, Nonlinear Fuctional Analysis, Springer-Verlag, Berlin, 1985.
- EL-Sayed A.M.A and Hashem H.H.G, Integrable and continuous solutions of a nonlinear quadratic integral equations, Electronic J. of Qualitative Theory of Differential Equations 2008, No.25,1-10.
- 5. Bapurao C. Dhage, Ram G. Metkar and

Remarking : Vol-2 * Issue-4*September-2015

Dnyaneshwar V. Mule, Asymptotic Stability of Comparable Solutions for Nonlinear Quadratic Fractional Integral Equations,GJMS Special Issue for Recent Advances in Mathematical Sciences and Applications-13 GJMS Vol 2. 2 37-47.

- B. C. Dhage, D. V. Mule and S. K. Ntouyas, Dhage iteration method for quadratic functional integral equations, Abstract Di erential Equations and Applications (2015).
- D. V. Mule and B.R.Ahirrao, Iteration Method for Positive Solution of A Nonlinear Quadratic integral equations, International J.of Math. Sci. and Engg. Appls. (IJMSEA).Vol.9 No.II June(2015)