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Introduction  

 The quadratic integral equations have been studied by some 
autors see See Ar- gyros [1], Deimling [3], Chandrasekher [2] and the 
references therein. Recently fixed point principles in Banach algebras due to 
Dhage [5, 6,]. The motivation of this paper due work of EL-Sayed A.M.A and 
Hashem H.H.G  [4]. In this paper we modify positive solution of that problem 
[4] by using Dhage itration method. We prove the existence, approximations 
and positive solutions of a certain quadratic integral equation via an 
algorithm based on successive ap-proximations under partially Lipschitz and 
compactness conditions by using Dhage iteration method. 
  Given a closed and bounded interval J = [0; T], of the real line R, T > 0 

                    x(t)  =  a(t)  +  g(t, x(t))  k t, s f s, x(s) ds
t

0
                             (1) 

 Where f, g: J ×  ℝ →  ℝ , k ∶  J ×  J → ℝ , a ∶  J →  ℝ are continuous 

functions. 
 By a solution of the NQIE (1) we mean a function x  ∈  C(J;  R) that 

satisfies the equation (1) on J, where C(J ; R) is the space of continuous 
real-valued functions defined on J. 
 The NQIE (1) is well-known in the literature and here we find 
existence as well as approximations of positive solution of NQIE (1) by using 
work of Dhage [5]. If  k(t, s)f (s, x(s))ds =  1 for all t ∈   J and x  ∈  R the 

NQIE (1) reduces to nonlinear functional equation. 

                                       x t =  g t, x t  , t ∈   J                                          (2) 

and  if 𝑎(𝑡)  =  0 and g(t, x(t))  =  1 for all t ∈   J and  x ∈ R, it is reduced to 

nonlinear usual Volterra integral equation. 

                                       x t =  k t, s f s, x(s) ds
t

0
                                      (3) 

 Therefore, the NQIE (1)is general and the results of this paper 
include the existence, approximations results and positive solutions. 
Auxiliary Results 

 Let E denote a partially ordered real normed linear space with an 
order relation  ≤ and the norm  .   .It is known that E is regular if  𝑥𝑛 𝑛∈𝑁  is a 

nondecreasing (resp. nonincreasing) sequence in E such that 𝑥𝑛 → 𝑥∗ as 
𝑛 → ∞ then 𝑥𝑛 ≤ 𝑥∗ resp.  𝑥𝑛 ≥ 𝑥∗ for all  n ∈  N. 

We need the following definitions. 
Definition 2.1  

 A mapping T ∶  E →  E  is called isotone or nondecreasing if it 

preserves the order relation ≤, that is if x ≤ y implies T x ≤  T y  for all  

x, y  ∈  E. 
Definition 2.2  

 A mapping T ∶  E →  E is called partially continuous at a Point 

a ∈   E if for 𝜖 >  0 there exists a δ > 0 such that  𝑇𝑥 − 𝑇𝑎 < 𝜖 𝑥 is 

comparable to a and   𝑥 −  𝑎  <  δ. T called partially continuous on E if it is 

partially continuous at every point of it. It is clear that if T is partially 
continuous on E, then it is continuous on every chain C contained in E. 
Definition 2.3  

 A mapping T ∶  E  → E is called partially bounded if T (C) is 

bounded for every chain C in E. T is called uniformly partially bounded if all 
chains T (C) in E are bounded by a unique constant. T is called bounded if 
T (E) is a bounded subset of E. 

  

Abstract
In the present paper we prove the existence, approximations and 

positive solutions for a nonlinear quadratic integral equation. By using 
Dhage iteration method in partially ordered normed linear spaces.  
Subject Classification 

Quadratic integral equation; approximate positive solution; fixed 
point theorem.  



ISSN No. : 2394-0344                                                         Remarking : Vol-2 * Issue-4*September-2015 

2 

 

Definition 2.4  

 A mapping T ∶  E  → E is called partially 

compact if T(C) is a relatively compact subset of E for 
all totally ordered sets or chains C in E. T is called 
uniformly partially compact if T (C) is a uniformly 
partially bounded and partially compact on E. T is 
called partially totally bounded if for any totally ordered 
and bounded subset C of E, T (C) is a relatively 
compact subset of E. If T is partially continuous and 
partially totally bounded, then it is called partially 
completely continuous on E. 
Definition 2.5  

 The order relation ≤ and the metric d on a 

non-empty set E are said to be compatible if   𝑥𝑛 𝑛∈𝑁   
is a monotone that is, monotone nondecreasing or 
monotone nonincreasing sequence in E and if a 

subsequence  𝑥𝑛𝑘
 
𝑛∈𝑁

 of  𝑥𝑛 𝑛∈𝑁   converges to 

𝑥∗ implies that the whole sequence  𝑥𝑛 𝑛∈𝑁   
converges to 𝑥∗. Similarly, given a partially ordered 

normed linear space  E, ≤  .   , the order relation ≤ 

and the norm  .   are said to be compatible if  ≤ and 

the metric d defined through the norm  .    are 

compatible. Clearly, the set R of real numbers with 
usual order relation ≤  and the norm defined by the 

absolute value function  .   has this property.Similarly, 

the finite dimensional Euclidean space 𝑅𝑛with usual 

componentwise order relation and the standard norm 
possesses the compatibility property. 
 Definition 2.6   

 A upper semi-continuous and nondecreasing 
function  ψ: ℝ + → ℝ + is called a D-function provided  

𝜓(0)  =  0.Let  E , ≤,  .    be a partially ordered 

normed linear space. A mapping T ∶  E  → E is called 

partially nonlinear D-Lipschitz if there exists a D-
function ψ: ℝ + → ℝ + such that 

                      𝑇𝑥 − 𝑇𝑦 ≤ 𝜓  𝑥 − 𝑦                         (4) 

 for all comparable elements  x;  y ∈  E.If 

𝜓(r)  =  kr;  k >  0, then T is called a partially 

Lipschitz with a Lipschitz constant k .Let  E , ≤,  .     
be a partially ordered normed linear algebra. Denote 
        𝐸+ =  𝑥 ∈ 𝐸|𝑥 ≥ 𝜃 𝑤𝑒𝑟𝑒 𝜃 𝑖𝑠 𝑧𝑒𝑟𝑜 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑜𝑓 𝐸  
and  
    𝐾 =  𝐸+ ⊆ 𝐸|𝑢𝑣 ∈ 𝐸+ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑢𝑣 ∈ 𝐸+                  (5) 

 The elements of the set K are called the 
positive vectors in E. 
Lemma 2.7  

 If 𝑢1, 𝑢2 , 𝑣1, 𝑣2 ∈ 𝐾   are such that   𝑢1 ≤ 𝑣1  

and    𝑢2 ≤ 𝑣2  Then 𝑢1𝑢2 ≤ 𝑣1𝑣2 
Definition 2.8  

 An operator T∶ E →E is said to be positive if 

the range R T of T is such that R T ⊆ K. The Dhage 

iteration method is embodied in the following hybrid 
fixed point theorem which is a useful tool in this paper. 
Theorem 2.9  

 Let  E , ≤,  .     be a regular partially ordered 

complete normed linear algebra such that the order 
relation ≤ and the norm  .   in E are com-patible in 

every compact chain of E. Let A; B ∶  E  →K be two 

nondecreasing  operators such that 
1. A is partially bounded and partially nonlinear D-

Lipschitz with D-function 𝜓𝐴 

2. B is partially continuous and uniformly partially 
compact, and 

3. M ψA (r)  <  𝑟;  𝑟 >  0,  where and  

M =   sup B(C)  K: C is a chain in E   and 

4. there exists an element 𝑥0 ∈ 𝑋 such that 𝑥0 ≤
𝐴𝑥0𝐵𝑥0 or 𝑥0 ≥ 𝐴𝑥0𝐵𝑥0. be a regular partially 

ordered complete normed line Then the operator 
equation 

                                 𝐴𝑥𝐵𝑥 = 𝑥                                 (6) 

 has a positive solution 𝑥∗ in E and the 

sequence  𝑥𝑛   of successive iterations defined by  

𝑥𝑛+1 = AxnBxn  , n =  0;  1 . . .. converges monotonically  

to 𝑥∗ 
Main Results 

 The NQIE (1) is considered in the function 
space  C(J; R) of continuous real-Valued functions 

defined on J. We define a norm  .   and the order 

relation  ≤ in C(J; R) by 

                          x    =  supt∈J x(t)                           (7) 

        And 
                           x ≤ y ⟺ x(t) ≤ y(t)                         (8) 

 for all t ∈ J respectively. Clearly, C(J; R) is a 

Banach algebra with respect to above supremum 
norm and is also partially ordered w.r.t. the above par-
tially order relation ≤ It is known that the partially 

ordered Banach algebra C(J; R) has some nice 

properties w.r.t. the above order relation in it. The 
following lemma follows by an application of Arzella-
Ascolli theorem 
Lemma 3.1  

 Let  C(J; R , ≤,  .    be a partially ordered 
Banach space with The norm ‖.‖ and the order 
relation ≤ defined by (7) and (8) respectively. Then    
 .   and  ≤ are compatible in every partially compact 

subset of C (J;R). 
 We need the following definition in what 
follows 
Definition 3.2  

 A function u ∈ C(J;R) is said to be a lower 
solution of the NQIE (1) if it satisfies                    

u(t)  =  a(t)  +  g(t, u(t))  k t, s f s, u(s) ds
t

0

 

 for all t ≤ J Similarly, a function v ∈ C(J;R) is 

said to be a lower solution of the NQIE (1) if it satisfies 
the above inequalities with reverse sign. 
 We consider the following set of assumptions 
in what follows: 
(A0) a defines a continuous function   a ∶  J →  ℝ+ 

(A1) g defines a function g: J ×  ℝ →  ℝ . 

(A2) There exists a real number 𝑀𝑔 > 0 such that 

g t;  x ≤ Mg   for all t ∈ J and  x ∈  R. 

(A3) There exists a D-function 𝜙 such that 0 ≤
g t;  x −  g t;  y ≤ 𝜙 x − y for all t ∈  J and x;  y ∈
 R, x ≥  y 

(B1) f defines a function f ∶  J ×  ℝ →  ℝ 

(B2) There exists a real number M𝑓  >  0 such that 

f t;  x ≤  Mf   for all t ∈  J and  x ∈  R. 

(B3) f(t;  x) is nondecreasing in x for all t ∈ J. 

(B4) The NQIE (1) has a lower solution u ∈  C(J; R) 
Theorem 3.3  

 Assume that hypotheses (A0)-(A3) and (B1)-
(B4) hold. Furthermore, assume that, 
            (M𝑓KT)𝜓𝑔(𝑟)  +  𝑎  <  𝑟, 𝑟 >  0                  (9) 

 then the NQIE has a positive solution 
𝑥∗ defined on J and the sequence  𝑥𝑛 𝑛∈𝑁 of 

successive approximations defined by. 

xn+1 t =  a t +  g t, xn t   k t, s f s, xn s  ds
t

t0
, t ∈ J        (10) 

where,  x0  =  u   converges monotonically to 𝑥∗ 
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Proof 

 Set E =  C(J; R).  Then, from Lemma 3.1 it 

follows that every compact chain in E possesses the 
compatibility property with respect to the norm  .   

and the order relation ≤ in E. Define two operators A 

and B on E by            
                    Ax(t)  =  g(t;  x(t));  t ∈  J                      (11) 

                  𝐵𝑥 𝑡 =  k t, s f s, xn s  ds
t

t0
                 (12) 

 From the continuity of the integral and the 
hypotheses (A0)-(A1) and (B1), it follows that A and B 
define the maps  A; B ∶  E →  K. Now by definitions of 

the operators A and B, the NQIE (1) is equivalent to 
the operator equation 
                Ax t . Bx(t)  =  x(t);  t ∈  J                       (13) 

 We shall show that the operators A and B 
satisfy all the conditions of Theorem 2.9. This is 
achieved in the series of following steps. 
Step I 

 A and B are nondecreasing on E. Let 
x;  y ∈  Ebe such that  x ≥   y. Then by hypothesis 

(A2), we obtain         
Ax(t) = a(t) + g(t;  x(t) 

            ≥ a t + g t;  y t   

                                  =  Ay(t) 
 for all  t ∈  J. This shows that A is 

nondecreasing operator on E into E. Similarly using 
hypothesis (B3), it is shown that the operator B is also 
nonde-creasing on E into itself. Thus, A and B are 
nondecreasing positive operators on E into itself. 
Step II 

 A is partially bounded and partially D-
Lipschitz on E.  
 Let x ∈  E be arbitrary. Then by (A2) 

                     Ax(t) ≤  a(t)  +  g(t;  x(t))     
                    ≤  a(t) +  g(t;  x(t))  
                ≤  𝑎 + 𝑀𝑔 

 for all t ∈  J. Taking supremum over t, we 

obtain  Ax  ≤   a  +  Mg  and so, A is bounded. This 

further implies that A is partially bounded on E. Next, 
let x;  y ∈  E be such that  x ≥  y. Then, by hypothesis 
(A3), 

 Ax t − Ay(t) =  a t +  g t;  x t  − a t −  g(t;  y(t))   

                           ≤   g t;  x t  −  g(t;  y(t))   

                           ≤ 𝜙( x(t) − y(t) ) 

                           ≤ 𝜙(x − y) 

for all  t ∈  J. Taking supremum over t, we 

obtain  Ax − Ay  ≤ 𝜙 ( x − y ) for all x;  y ∈  E with x 

≥ y. Hence A is a partially nonlinear D-Lipschitz on E  

which further implies that A is a partially continuous 
on E. 
Step III 

 B is partially continuous on E Let  𝑥𝑛 𝑛∈𝑁 be 

a sequence in a chain C of E such that x𝑛  → x for 

all n ∈  N. Then, by dominated convergence theorem, 

we have 

                     Bx(t)x→∞
lim    =       k t, s f s, x(s) ds

t

0x→∞
lim   

                                =  k t, s    f s, x(s) x→∞
lim  

t

t0
ds   

                                   =  k t, s f s, x s  ds
t

t0
 

                                   = Bx(t) 
 for all  t ∈  J. This shows that B𝑥𝑛  converges 

monotonically to Bx pointwise on J. Next, we will show 
that  𝐵𝑥𝑛  𝑛∈𝑁 is an equicontinuous sequence of 

functions in E. Let t1 , t2  ∈  J  with  t1  < t2 .  

 𝐵𝑥𝑛 𝑡2 − 𝐵𝑥𝑛 𝑡1  ≤   k t1, s f s, x(s) ds
t2

0

−  k t2 , s f s, x(s) ds
t2

0

  

                              ≤     k t1 , s − k t2, s  
T

0
 𝑀𝑓𝑑𝑠  

                             ≤ 𝐾𝑀𝑓  𝑡1 − 𝑡2  

                                → 0 𝑎𝑠 𝑡1 − 𝑡2 → 0  
uniformly for all  n ∈  N. This shows that the 

convergence 𝐵𝑥𝑛 → 𝐵𝑥 is uniform and hence B is 

partially continuous on E. 
Step IV 

 B is uniformly partially compact operator on 
E. Let C be an arbitrary chain in E. We show that B(C) 
is a uniformly bounded and equicontinuous set in E. 
First we show that B(C) is uniformly bounded. Let 
y ∈ B(C) be any element. Then there is an element 

x ∈  C be such that   y =  Bx. Now, by hypothesis (B2), 

                            𝑦 𝑡 ≤  k t, s  f s, x s   ds
t

t0
 

                                  ≤ 𝐾𝑀𝑓𝑇 

                                   ≤ 𝑟 

 for all  t ∈  J. Taking supremum over t, we 

obtain  𝑦  =   𝐵𝑥  ≤  𝑟 for all  y ∈ B(C). Hence, B(C) 

is a uniformly bounded subset of E. 
Moreover,   B(C) ≤ r for all chains C in E.Hence, B is 

a uniformly partially bounded operator on E.  
 Next, we will show that B(C) is an 
equicontinuous set in E. Let t1 , t2   ∈ J with 

               t1  <  t2   Then, for any   y ∈  B(C), one has, 

         𝑦 𝑡2 − 𝑦 𝑡1  =  𝐵𝑥 𝑡2 − 𝐵𝑥 𝑡1                        

 ≤   k t1 , s f s, x(s) ds
t

0

−  k t2 , s f s, x(s) ds
t1

0

  

  ≤  k t1 , s − k t2 , s    f s, x(s) ds 
t2

t1
≤ 𝐾𝑀𝑓  𝑡1 − 𝑡2  

   → 0 𝑎𝑠 𝑡1 − 𝑡2 → 0  
 uniformly for all y ∈  B(C). Hence B(C) is an 

equicontinuous subset of E.  Now, B(C) is a uniformly 
bounded and equicontinuous set of functions in E, so 
it is compact. Consequently, B is a uniformly partially 
compact operator on E into itself. 
Step V 

 u satisfies the operator inequality u ≤ AuBu. 
By hypothesis (B4), the NQIE (1) has a lower solution 
u defined on J. Then,  
We have 

u(t)  =  a(t)  +  g(t, u(t))  k t, s f s, u(s) ds
t

0
            (14) 

for all t ∈  J From definitions of the operators A and B 

it follows that 
u t ≤ Au t Bu t   for all  t ∈  J.  
 Hence  u ≤  AuBu. 
Step VI 

 D-function 𝜙 satisfies the growth condition 

Mϕ(r) < r; r > 0. Finally, the D-function Φ of the 
operator A satisfies the inequality given in hypothesis 
(d) of Theorem 2.9, viz. 

M𝜓𝐴(𝑟)  ≤  KMfT +  𝑎   𝜙(𝑟)  <  𝑟,  for all 𝑟 >  0   

 Thus A and B satisfy all the conditions of 
Theorem 2.9 and we apply it to Conclude that the 
operator equation Ax Bx =  x  has a solution. 

Consequently the integral equation and the NQIE (1) 
has a solution x∗ defined on J.Fur-theremore,   𝑥𝑛 𝑛∈𝑁   
the sequence of successive approximations defined 
by (10) converges monotonically to  x∗.This completes 

the proof. 
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